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Abstract 

In this paper, we evaluate the economic value that arise from incorporating conditional volatility 

when forecasting the covariance matrix of returns for both short and long horizons in the 

Vietnamese stock market, using the volatility timing framework of Fleming et al. (2001). We 

report three main findings. First, investors are willing to pay to switch from the static to a 

dynamic volatility timing strategy. Second, there is negligible difference in forecast performance 

among short and memory volatility models. However, the more parsimonious EWMA family 

models tend to produce better forecasts of the covariance matrix than those produced by the 

GARCH family volatility models at all investment horizons. Third, when transaction costs are 

taken into account, the gains from daily rebalanced dynamic portfolios deteriorate. However, it 

is still worth implementing the dynamic strategies at lower rebalancing frequencies. Our results 

are robust to estimation error in expected returns, the choice of risk aversion coefficient and 

estimation windows.         
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1 Introduction 

Extensive research suggests that multivariate conditional volatility models produce better 

forecasts of the covariance matrix than those produced by the unconditional covariance matrix 

estimator (see, for example, Engle and Colacito, 2006). Exploiting the predictability of volatility 

and covariance has become a key driver in many applied areas of finance, including asset 

allocation, asset pricing and risk management. Fleming et al. (2001) are among the first to study 

the economic value of predicting and timing volatility for risk averse investors in an asset 

allocation setting. Expected returns are treated as constant and investors periodically update their 
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portfolios based on forecasts of the conditional covariance matrix. They show that investors are 

better off in terms of utility when switching from a static strategy based on the unconditional 

volatility estimator to dynamic volatility timing strategies based on conditional volatility models. 

Recent studies incorporate more properties of volatility dynamics in application to investment 

decisions. Thorpe and Milunovich (2007) allow for asymmetries in modelling volatility and 

correlation, and show that investors are willing to pay to switch from symmetric to asymmetric 

forecasts. Similarly, Hyde et al. (2010) demonstrate the benefits of accounting for volatility 

jumps in asset allocation strategies. In the dynamic economic value studies, the conditional 

covariance matrix is typically estimated applying popular conditional volatility models such as 

the multivariate Exponentially Weighted Moving Average (EWMA) or multivariate memory 

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models, where shocks to 

volatility and covariance dissipate rapidly due to their exponential weighting. Consequently, 

most of the studies on the economic value of the short memory conditional covariance matrix 

focus on short horizon day traders. While this approach may make the most use of the forecast 

power of the short memory conditional volatility models, it may not nevertheless correspond to 

the needs of most practical investors, who often rebalance their portfolios at lower frequencies. 

A mounting body of empirical evidence now suggests that a shock to return volatility is more 

persistent than what is implied in the exponential decay of the short memory GARCH or EWMA 

models. This “long memory” feature is important not only for the measurement of current 

volatility, but also for forecasts of future volatility, especially over longer horizons. This has 

prompted the development of volatility models that incorporate long memory in volatility 

dynamics (for example, the  Fractionally Integrated FIGARCH model of Baillie, Bollerslev and 

Mikkelsen (1996), the Hyperbolic HYGARCH model of Davidson (2004), the Component 

CGARCH model of Engle and Lee (1999) or the Long memory EWMA model of Zumbach 

(2006)). Long memory volatility models have been suggested to provide better estimates and 

forecasts of volatility than those generated by short memory volatility in both univariate and 

multivariate context (Teyssiere, 1998, Niguez and Rubia, 2006, Harris and Nguyen, 2013).  

Accurate forecast of return volatility and covariance is of crucial importance in emerging 

markets where stock market volatility is much higher than that in developed markets. As one of 

the most rapidly developing emerging markets in the world, the Vietnamese stock market has 

attracted the interests of both investors and researchers. However, with only 15 years of 

development, the Vietnamese stock market is characterized by extreme stock return movements. 

Initiating in 2000, the Vietnamese major stock index, the VN index, reached its peak in March 

2007 at around 1170 before losing 80% of its value to its lowest level of 280 in December 2008. 
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Understanding the sources and the characteristics of volatility in Vietnam is thus important for 

policymakers as well as investors. However, volatility modelling and forecasting in Vietnam has 

not attracted the deserved attention possibly because the stock market is largely under-

developed. Indeed, so far the number of studies on volatility in Vietnam is limited and has 

generally restricted themselves to the analysis of volatility in a univariate setting (see, e.g., Tran 

Manh Tuyen, 2011, Vo Xuan Vinh and Nguyen Thi Kim Ngan, 2011). There is (to our best 

knowledge) still a lack of research that examines the benefits of allowing for conditional 

volatility in the forecasts of the covariance matrix required in asset allocation, risk management 

and asset pricing in the Vietnamese stock market. Also, emerging markets are very likely to 

exhibit characteristics different from those observed in develop markets. Emerging market 

returns and volatility are found to be more persistent than those in developed markets (Harvey, 

1995, Bekaert and Harvey, 1997, Sadique and Silvapulle, 2001) . This could present some 

market inefficiency, or it could because the risk factors are more persistent in emerging markets. 

Therefore, it should be of interests to study the long memory volatility behaviour in stock returns 

in Vietnam. Our paper thus fills in this gap, studying the economic benefits of employing 

multivariate short and long memory conditional volatility models to forecasts the covariance 

matrices in the Vietnamese stock market. 

This paper evaluates the economic value of allowing for conditional volatility dynamics, short 

and long memory, in forecasting the covariance matrix for asset allocation over both short and 

long horizons, using the volatility timing framework of Fleming et al. (2001). Assuming constant 

expected returns, our investors follow a volatility timing strategy and periodically update their 

portfolios based on forecasts of the conditional covariance matrix. Dynamic portfolios 

constructed with alternative conditional volatility models are evaluated against static portfolios 

constructed with the constant unconditional covariance matrix estimates, and equally-weighted 

portfolios. We employ five multivariate conditional volatility models, both short memory and 

long memory. As is common in the literature, we restrict our attention to the class of EWMA and 

GARCH models. While many alternative multivariate conditional volatility models have been 

developed in literature, we choose models that can be parsimoniously constructed to forecast 

high-dimensional covariance matrices.  The two short memory volatility models are the 

popularly used RiskMetrics EWMA model of JP Morgan (1994) and the GARCH model of 

Bollerslev (1986) embedded in the Dynamic Conditional Correlation (DCC) framework of Engle 

(2002) (the GARCH-DCC model). We also employ three long memory volatility models: the 

multivariate long memory EWMA model of Zumbach (2013) and two multivariate long memory 

models with the DCC structure. These are the component CGARCH model of Engle and Lee 
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(1999) and the FIGARCH model of Baillie et al. (1996). While the models that are based on the 

DCC decomposition allow for long memory only in the variances, the long memory EWMA 

model captures the long memory behaviour in both the variances and covariances.  

We construct a high dimensional portfolio of VN30 components over the period 1 January 2010 

to 30 June 2016. Portfolios generated using different conditional volatility models are evaluated 

using the out-of-sample Sharpe ratios and the performance fees that investors are willing to pay 

to switch from the static to the dynamic strategies. We also calculate the breakeven transaction 

costs that make investors indifferent between the static and the dynamic strategies in term of 

utility.  

Our study is among the first to examine the economic value of multivariate conditional volatility 

models in the Vietnamese stock market.  We report three main findings. First, consistent with the 

literature, the dynamic volatility timing strategies significantly outperform the static strategies 

with different performance measures and across different rebalancing frequencies. Second, there 

is negligible difference among short memory and long memory volatility models. However, due 

to their parsimony, the EWMA family models generally dominates the GARCH family. They 

consistently produce portfolios that are more economically useful than those produced by the 

GARCH volatility models at all investment horizons. Third, when transaction costs are taken 

into account, the gains from daily rebalanced dynamic portfolios deteriorate. However, it is still 

worth implementing the dynamic strategies at lower rebalancing frequencies. The results are 

robust to estimation error in expected returns, the choice of risk aversion coefficient and 

estimation windows.     

The remaining of the paper is structured as follows. Section 2 provides details of the five 

multivariate conditional volatility models used in the empirical analysis. Section 3 sets up the 

asset allocation framework to study the economic usefulness of the dynamic strategies. Data is 

discussed in Section 4. Section 5 reports the empirical results, while Section 6 offers some 

concluding comments and suggestions for future research. 

2 Multivariate Conditional Volatility Models 

In the multivariate context, conditional volatility modelling poses significant computational 

challenges, especially for the high dimensional covariance matrices that are typically 

encountered in asset allocation and risk management. While many alternative volatility models 

have been developed in the literature, our choice reflects the need for parsimonious models that 

can be used for forecasting high dimensional covariance matrices. We employ two popularly 
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used multivariate short memory models: the GARCH(1,1)-DCC and the EWMA models. In 

order to evaluate the relative benefits of allowing for long memory when forecasting the 

covariance matrix, we compare the performance of the two short memory with three long 

memory volatility models: the multivariate long memory EWMA (LM-EWMA) model of 

Zumbach (2013) and the two DCC-structured long memory models: the FIGARCH(1,d,1)-DCC 

and the CGARCH(1,1)-DCC models. In this section, we give details of each of these five 

models. 

2.1 The GARCH(1,1)-DCC model 

Observing that squared residuals are often autocorrelated even though residuals themselves are 

not, Engle (1982) sets the stage for the new class of time-varying conditional volatility models 

with the Autoregressive Conditional Heteroskedasticity (ARCH) model. Bollerslev (1986) 

extend the ARCH model by introducing autoregressive terms in his Generalised Autoregressive 

Conditional Heteroskedasticity (GARCH) model.  

Consider a vector of log returns tr  with a conditional mean of zero and a conditional variance th

: 

 tt tr h   (1) 

where t  denotes an i.i.d. mean zero, unit variance stochastic process. In the GARCH(1,1) 

model, the conditional variance, th ,  is modelled as 

 2

1 1t t th r h        (2) 

The parameter   determines the speed at which the conditional variance responds to new 

information, while the parameter    determines the speed at which the conditional variance 

reverts to its long run average. The GARCH model is a short memory model when the weights 

on past squared errors decline at an exponential rate. Assume that 1    so that the long-run, 

or unconditional variance exists  
12 1   


   , the h-step-ahead forecast of the 

GARCH(1,1) model is given by 

    
12 2

1

h

t h th h   


     ,  (3) 

where 
2  is the unconditional variance.  



6 

 

In order to implement the GARCH(1,1) model in the multivariate context, we employ the 

Dynamic Conditional Correlation (DCC) model of Engle (2002), in which the conditional 

covariance matrix is decomposed as follows: 

 t t t tH D R D   (4) 

    
1 1

2 2
t t t tdiag diag

 
R Q Q Q   (5) 

 1 1 1t t t t'    εQ ε Q   (6) 

where tR  is the conditional correlation matrix, tD  is a diagonal matrix with the time varying 

standard deviations 
,i th  on the main diagonal, i.e.,  ,t i tdiag hD , tQ  is the approximation 

of the conditional correlation matrix tR , and (1 )     R , with R  being the unconditional 

average correlation 1

1 t

T

tT t
'


 R εε . The positive semi-definiteness of tQ  is guaranteed if   

and   are positive with 1     and the initial matrix 1Q  is positive definite. 

Here, we estimate the conditional volatility tD  by employing the GARCH model of Bollerslev 

(1986). We divide the returns by their conditional volatility and use the standardized, zero-mean 

residuals 1

t t t

ε D r  to compute the quasi-conditional correlation matrix tQ . As the diagonal 

elements of tQ  are equal to unity only on average, tQ  is rescaled to obtain the conditional 

correlation matrix    
1 1

2 2

t t t tdiag diag
 

R Q Q Q . The conditional volatility tD  and 

conditional correlations tR  are then combined to estimate the conditional covariance matrix tH .  

The h-step-ahead conditional covariance matrix is given by 

 t h t h t h t h   H D R D .  (7) 

The forecast of each volatility in t hD  is estimated using the recursive procedure, as in equation 

(3). Since tR  is a non-linear process, the h-step-ahead forecast of tR  cannot be computed using 

a recursive procedure. However, assuming for simplicity that  1 1 1t t t tE   Q'ε ε , Engle and 

Sheppard (2001) show that the forecasts of t hQ  and t hR  are given by 
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     

   

2
1

1

0

1 1

2 2

1

.

h
j h

t h t

j

t h t h t h t hdiag diag

     




 



 

   

     



Q Q Q

R Q Q Q

 (8) 

2.2 The RiskMetrics EWMA model 

Consider an n-dimensional vector of returns  1 2, , ,, 't t t ntr r r r  with a conditional mean of zero 

and a conditional covariance matrix tH : 

 
1
2

tt t H εr   (9) 

where tε  is i.i.d with   0tE ε  and  var t nε I . The short memory RiskMetrics EWMA 

covariance matrix is defined by 

  1 1 11t t t t'     H H r r ,  (10) 

where   is the decay factor 0 1  . If the GARCH model normally assumes 1   , the 

EWMA model lets   , 1    and thus 1   . The EWMA model is a special case of 

the Integrated GARCH model of Engle and Bollerslev (1986) where a shock to volatility will 

eventually die out at an exponential rate, but it has a permanent effect on forecast volatility at all 

horizons. The EWMA model, though still a short memory model, can hence capture long run 

persistence in volatility. It is straightforward to show that the h-step cumulative forecast of the 

EWMA model is given by 

 1: 1t t h th   H H   (11) 

While the parameters of the GARCH family models have to be estimated by rigorously statistical 

methods, normally using the Maximum Likelihood procedure, the parameter   of the EWMA 

process is often set ad hoc. As suggested by JP Morgan (1994),   takes the values of 0.94 and 

0.97 for daily and weekly forecasts, respectively. 

2.3 The FIGARCH(1,d,1)-DCC model 

Baillie et al. (1996) are among the first to develop long memory volatility models. Arguing that 

the volatility process is in a halfway house between I(0) and I(1), they propose the Fractionally 

Integrated GARCH (FIGARCH) model, in which long memory is introduced through a 

fractional difference operator, d. This model incorporates a slow hyperbolic decay for lagged 

squared innovations in the conditional variance, while still letting the cumulative impulse 
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response weights tend to zero, thus yielding a strictly stationary process. In the FIGARCH(1,d,1) 

model, the conditional volatility is modelled as: 

    2

1[1 1 1 ]
d

t t th L L L r h           ,  (12) 

with L being the lag operator. Baillie et al. (1996) show that for 0 1d  , the FIGARCH process 

does not have a finite unconditional variance, and is not weakly stationary, a feature shared with 

the IGARCH model. However, by a direct extension of the corresponding proof for the IGARCH 

model, they show that the FIGARCH model is strictly stationary and ergodic. The FIGARCH 

process reduces to the GARCH process when d = 0. The h-step-ahead forecast of the 

FIGARCH(1,d,1) model is easily constructed by recursive substitution: 

       
1 1 2

11 [1 1 1 1 ]
d

t h t hh L L L h   
 

         . (13) 

To implement the FIGARCH(1,d,1) model in the multivariate context, we use the DCC approach 

described above, with the same forecast functions for t hQ  and t hR .  

2.4 The CGARCH(1,1)-DCC model 

An alternative way to capture the long memory feature is through a component structure for 

volatility. Engle and Lee (1999) propose the Component GARCH (CGARCH) model, in which 

the long memory volatility process th  is modelled as the sum of a long term trend component, 

,tq and a short term transitory component, ts . The CGARCH(1,1) model has the following 

specification: 

  2

1 1 1 1( )t t t t t th q r q h q           (14) 

 2

1 1 1( )t t t tq q r h        ,  (15) 

where t t ts h q   is the transitory volatility component. The volatility innovation 2

1 1t tr h   

drives both the trend and the transitory components. The long run component evolves over time 

following an AR process with   close to 1, while the short run component mean reverts to zero 

at a geometric rate   . It is assumed that 0 1      , meaning that the long run 

component is more persistent than the short run component. The h-step-ahead forecast of the 

CGARCH(1,1) model is given by   

  
1
( )

h

t h t h t th q h q 


       (16) 
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1

1 1

h

t h tq q
 


 





 
   

  
.  (17) 

As with the FIGARCH(1,d,1) model, in order to implement the CGARCH(1,1) model in the 

multivariate context, we use the DCC approach described above, with the same forecast 

functions for t hQ  and t hR .  

2.5 The multivariate long memory LM-EWMA model 

Zumbach (2013) generalises the EWMA model to incorporate long memory behaviour in 

volatility. The long memory LM-EWMA model is the weighted average of K standard (short 

memory) multivariate EWMA processes with logarithmically decaying weight: 

 
 0

1
1

k

k

ln
w

lnC





 
   

 
 with the normalization constant 

 
 0

kln

lnk
C K




  , such that 1kk

w  .   

The conditional covariance matrix in the LM-EWMA model can also be expressed as the 

weighted sum of the cross products of past returns:  

 
1 1

0

( )t t i t

i

i '


  



H r r    (18) 

with ( ) 1i  . In the RiskMetrics EWMA model of JP Morgan (1994), the weights ( )i  

decay geometrically, while in the LM-EWMA model, the weights ( )i  are assumed to decay 

logarithmically, yielding a long memory process for the elements of the variance-covariance 

matrix: 

 ( ) 1 i

k k kk
i w            (19) 

where  1exp ,
kk    with geometric time structure 

1

1 2
k

k 


  for (1,..., ),k K  The 

conditional covariance matrix is therefore defined parsimoniously as a process with just three 

parameters: 1  (the shortest time scale at which the volatility is measured, i.e. the lower cut-off), 

K  (the upper cut-off, which increases exponentially with the number of components K), and 0  

(the logarithmic decay factor). For the univariate case, Zumbach (2006) sets the optimal 

parameter values at 0   1560 days = 6 years, 1   4 days and K   512 days, which is 

equivalent to 15.K   
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Since the LM-EWMA covariance matrix is the sum of EWMA processes over increasing time 

horizons, forecasts of the covariance matrix are straightforward to obtain using a recursive 

procedure (see Zumbach, 2006, for details of the univariate case). The 1-step-ahead forecast of 

the covariance matrix is already given by Equation (18). Under the assumption of serially 

uncorrelated returns, the h-step-ahead cumulative forecast of the covariance matrix given the 

information set tF  at time t is equal to: 

 
1: 1

0

( , )
T

t t h t i t

i

h h i '   



 H r r   (20) 

with the weights  ,h i  being given by 

  
 1

,

1 1

11
,

1

K h
k i

j k kT
k j k

h i w
h


 





 





  ,   (21) 

where T is the cut-off time
2
, 

,j kw  is the k
th

 element of vector   
j

j ' ' w = w M ι μ w , 

 1 2, , , 'Kw w ww , μ  is the vector of k , M is the diagonal matrix consisting of k , and ι  is 

the unit vector. Since 1kk
w  , we obtain ( , ) 1h i  .  

Note that when 1K  , we have 1,w and the LM-EWMA forecast function reduces to a 

standard short memory EWMA forecast function with forecast weights 

     , 1 1i T

k k kh i      , independent of the forecast horizon. Since the weights  ,h i  are 

set ad hoc, the forecast in equation  is straightforward to compute. As with the standard EWMA 

model, the LM-EWMA model circumvents the computational burden of other multivariate long 

memory models, and indeed, can be implemented in a spreadsheet easily. 

3 The Economic Value of Dynamic Volatility Timing Strategy 

3.1 Dynamic Volatility Timing Framework 

We consider a risk averse investor who wants to maximise his expected utility 1tU   in the mean-

variance optimization framework. He will allocate a fraction tw  of his wealth to n  risky assets 

and the remainder  '1 tw ι  to a risk-free asset, where ι  is the 1n  unit vector, so that: 

   2

1 , 1 , 1max
2t

t p t p tE U


   

 
  

 w
       (22) 

                                                 
2
 Zumbach (2011) suggests that for many practical applications, the memory length T is of the order of one to two 

years (T = 260 to T = 520). Here, we choose T equal to the estimation window length. 
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where 
, 1p t 

 is the portfolio‟s expected returns  ' '

, 1 1 1 f

p t t t t r    wμ w ι , 
2

, 1p t   is the 

portfolio‟s expected variance  
2 '

, 1 1p t t t t  w H w , 1tμ  is the vector of expected returns, 1tH  is 

the conditional covariance matrix, fr  is the risk-free rate and   is the risk aversion coefficient. 

In the empirical study, we assume a risk free rate of 7% and a risk aversion coefficient of 1. 

Different values of   are later considered in the robustness test. Short sales are allowed and no 

transaction costs are included. The solution to this optimization problem is: 

  * 1

1 1

1 f

t t t r




  w H μ ι . (23) 

Following Fleming et al. (2001), the investor models expected returns as constant  1t μ μ . If 

the investor also assumes a constant covariance matrix  1t H H , the optimal weights will be 

constant over time and he follows a „static strategy’. However, if the investor believes that the 

covariance matrix is time-varying, he will follow a „dynamic strategy‟ to change the optimal 

weights based on his forecasts of the conditional covariance matrix. The investor will employ the 

five multivariate conditional volatility models (the two short memory multivariate EWMA and 

the GARCH(1,1)-DCC models and the three long memory LM-EWMA, FIGARCH(1,d,1)-DCC 

and CGARCH(1,1)-DCC models) to generate forecasts of the covariance matrix for the dynamic 

strategies. The economic value of volatility timing can be evaluated by comparing the 

performance of the static and dynamic portfolios. The portfolios constructed with the three 

multivariate long memory volatility models are also compared to those constructed with the two 

short memory volatility models to specifically evaluate the gains of exploiting long memory vs. 

short memory properties of volatility. 

3.2 Performance Measures of Dynamic Strategies 

The performance of the optimal portfolios is evaluated using two common measures. First, we 

estimate the out of sample Sharpe ratio, the most commonly used performance measure in 

literature. The Sharpe ratio for each strategy is calculated as the sample mean of the realised 

portfolio excess returns over the risk free rate divided by their sample standard deviations, 

 p f

p

r
SR






 . Second, following Fleming et al. (2001), we use a utility-based approach to 

measure the value of the performance gains associated with using a given estimator of the 

conditional covariance matrix. In so doing, we estimate the performance fee, , defined as the 

maximum fee that the investor would be willing to pay to switch from a static strategy to a 


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dynamic strategy, without being worse off in terms of utility. To estimate this fee, we find the 

value of  that equates the realised average utilities for two alternative portfolios: 

    
1 1
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  , (24) 

where t  is the coefficient of relative risk aversion ,  and  are the gross realised 

returns of the dynamic and static strategies, respectively. In the empirical analysis, we report the 

annualised performance fees in basis points for two different values of , 1 and 5. 

3.3 Transaction Costs 

Volatility timing requires regular updates of portfolios, thus incurring non-trivial transaction 

costs. Transaction costs may be high enough to offset all the gains that arise from the dynamic 

strategy. Following Han (2006), we estimate the breakeven transaction cost τ
be

, defined as the 

transaction cost that make investors indifferent between the dynamic and the static strategies in 

terms of utility. If an investor has a transaction cost lower than the breakeven transaction cost, he 

will be better off with the dynamic strategy; otherwise he should follow the static benchmark. 

Han sets the transaction costs equal to a fixed percentage  of the value traded for all stocks. 

The costs for the static and dynamic strategies are given by 
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and  
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, respectively. (26) 

The breakeven transaction cost is computed by equating the utilities of the static and dynamic 

strategies in Equation (25) after taking into account the trading costs. The higher the breakeven 

transaction cost, the more easily the dynamic trading strategies can be implemented. Since the 

breakeven transaction is a proportional cost paid every time the portfolios are rebalanced, we 

report this cost in basis points at the rebalancing frequency, e.g., for a daily rebalanced portfolio, 

we report the cost in daily basis points. Breakeven transaction costs are only estimated when the 

performance fees in Equation (24) are positive. 

4 Data Description 



, 1d tR  , 1s tR 



 
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We construct a high dimensional portfolio, comprising the components of the VN30 index as of 

30 June 2016. Daily data are collected from FiinPro for the period from 01 January 2010 to 30 

June 2016. As the components of our portfolio remain unchanged during our experiments, we 

exclude four stocks (MBB, HHS, NT2 and FLC), which were listed after January 2010. Returns 

are calculated as the log price difference over consecutive days. All days on which the market 

was closed are excluded from the sample, yielding 1613 observations. Summary statistics for the 

26 VN30 stocks are given in Table 1.  

Table 1. Summary Statistics for the VN30 Portfolio 

Return  

series 

Mean 

(%) 

Std. 

Dev. 

(%) 

Skewness Kurtosis JB 
Long memory test 

dGPH R/S V/S 

BVH 13.12 44.52 0.09 2.74 6.67 0.35*** 1.92*** 0.23 

CII 5.37 36.60 0.08 3.67 32.19 0.38*** 1.93*** 0.28*** 

CTG 3.86 31.00 0.24 4.31 131.11 0.34*** 2.03*** 0.31*** 

DPM 6.68 28.42 -0.05 4.40 131.62 0.30*** 2.41*** 0.53*** 

EIB -1.42 24.83 0.26 6.08 657.59 0.23*** 1.53 0.12 

FPT 9.06 26.17 0.15 5.13 312.05 0.20** 1.45 0.11 

GMD -3.35 37.11 0.04 3.64 27.59 0.19** 2.33*** 0.58*** 

HAG -25.16 35.54 0.11 3.85 52.32 0.41*** 1.93*** 0.27*** 

HCM 2.77 38.42 0.09 3.35 10.57 0.43*** 1.38 0.13 

HPG 15.15 33.77 0.14 3.69 37.25 0.09 1.75** 0.24*** 

HSG 18.16 41.08 0.08 3.29 7.36 0.17* 2.00*** 0.32*** 

HVG -2.11 39.42 0.18 3.53 27.85 -0.15 0.86 0.03 

ITA -20.37 43.27 0.16 2.79 10.00 0.36*** 2.33*** 0.54*** 

KBC -14.81 45.77 0.07 2.59 12.68 0.28*** 2.85*** 0.86*** 

KDC 8.67 30.30 0.16 4.64 186.61 0.12 1.51 0.11 

MSN 9.55 34.04 0.09 3.67 32.46 0.49*** 2.38*** 0.55*** 

PPC 1.59 38.05 0.03 3.46 14.51 0.24*** 2.23*** 0.35*** 

PVD -5.39 36.40 0.04 3.74 37.27 0.14* 1.35 0.09 

PVT -0.77 44.05 0.16 2.85 8.02 0.04 2.01*** 0.36*** 

REE 8.30 31.53 0.14 4.05 78.78 0.26*** 2.16*** 0.33*** 

SBT 25.81 33.80 0.16 3.91 63.32 0.38*** 2.04*** 0.31*** 

SSI -3.93 34.67 0.18 3.61 33.48 0.48*** 2.12*** 0.35*** 

STB -1.19 28.86 0.30 4.89 264.63 0.23*** 1.02 0.08 

VCB 9.88 32.15 0.06 4.12 84.97 0.18* 1.34 0.11 

VIC 18.89 30.44 0.07 4.02 71.03 0.32*** 2.70*** 0.63*** 

VNM 30.74 23.63 0.26 5.63 484.33 0.21*** 1.12 0.07 
The table reports descriptive statistics for the daily returns on 26 components of the VN30 index. Means 

and standard deviations are annualised. The sample period is from 01 January 2010 to 30 June 2016. 

dGPH is the fractional difference operator estimated using the Geweke-Porter-Hudak (GPH) test. R/S and 

V/S report the statistics to detect for long memory using the rescaled range estimator of Lo (1991) and of 

Giraitis et al. (2003), respectively. Rejection of the null hypothesis H0:  (short memory) is 

displayed by *, ** and *** for 10%, 5% and 1% significance level. 

0d 
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The performance of the 26 VN30 stocks differ dramatically. While VNM makes an average 

annual return of 30.74% over the period, HAG loses, on average, 25.16% per year. These stocks 

are characterised by a high level of volatility. However, higher volatility does not necessarily 

come with higher returns. VNM has the highest returns with the lowest volatility, while some 

other stocks such as ITA, KBC, HAG have negative returns with much higher volatility. The 

return series are highly non-normal, with a high leptokurtosis. The average correlation 

coefficient of the VN30 components is 0.34. 

We conduct tests to confirm the evidence of long memory dynamics in the volatility. A series is 

said to have a long memory if its fractional difference parameter,  0,1d . We apply three 

extensively used tests of long memory, namely the semiparametric (GPH) estimator of Geweke 

and Porter-Hudak (1983), the nonparametric modified „rescaled range‟ (R/S) test of Lo (1991) 

and the rescaled variance (V/S) test of Giraitis et al. (2003). The GPH estimator report the 

fractional difference operators d, while the two modified R/S and V/S tests report the statistics to 

test for the null hypothesis H0: 0d   (short memory) against H1: 0d  . To conduct the GPH 

test, we use the recommended bandwidths equal to the square root of the sample size, 40m . 

For the R/S and V/S test, we choose 21q    to include autocovariances of months. Most of the 

return series show evidence of long memory in the volatility in at least one of the tests, with the 

only exception of KDC and HVG. Most of the fractional difference parameters in the GPH tests 

are significantly greater than zero. We also conduct a one-sided test of the hypothesis 0.5d  , 

against the alternative 0.5d  . Rejecting this hypothesis, we confirm that the volatility processes 

of these series are characterised by long memory, but are nevertheless stationary.  

[Insert Table 1 here] 

5 Empirical Results 

5.1 Performance Analysis of the Dynamic Asset Allocation Strategies 

The whole sample is divided into an estimation period and a forecast period. The estimation 

period is from 1 Jan 2010 to 31 Dec 2013 (996 observations) and the forecast period from 1 Jan 

2014 to 30 June 2016 (617 observations). Expected returns are assumed to be constant and be the 

sample mean of the estimation period. The investor actively rebalances his portfolios 

periodically, based on changes in the forecasts of the conditional covariance matrix. The 

estimation period is used to initiate the estimation of the conditional covariance matrices and 

generate one step ahead forecasts. The forecasts are then used to compute the optimal portfolio 

weights. Realised portfolio returns at the next step are calculated. Then the estimation window is 
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rolled forward one step, models re-estimated, forecasts made, and portfolios rebalanced until the 

end of the sample is reached. The realised performance of the dynamic portfolios will be 

compared with that of the ex ante optimal static portfolio, constructed based on the sample mean 

and covariance matrix of the estimation period. Another benchmark is the equally weighted 

portfolio. 

Table 2 evaluates the out of sample performance of the daily rebalanced VN30 portfolios. The 

VN30 portfolio is constructed from 26 components of the VN30 Index. Investors would 

generally be better off with the dynamic strategies than the static and the equally weighted 

strategies. A day trader, for example, would be willing to pay up to 288 bps to switch from the 

static to the dynamic LM-EWMA strategy. However, in terms of the Sharpe ratio, some of the 

dynamic strategies (the GARCH-DCC, CGARCH-DCC and FIGARCH-DCC models) fail to 

dominate the static portfolios. Among the dynamic strategies, the EWMA and LM-EWMA 

models consistently outperform across all performance measures. With high breakeven 

transaction costs, it is also more feasible to implement the EWMA and LM-EWMA models in 

practice. It is interesting to see dominance of the portfolio constructed with the EWMA models. 

The outperformance of the EWMA model may be attributed to its implementation simplicity, 

hence yielding less estimation error. The EWMA processes are also not constrained by a mean 

level of volatility as in the GARCH family model and thus can be readily adjusted to changes in 

unconditional volatility.   

Table 2. Portfolio Performance of the VN30 Portfolio 

 
 (%)   (%) SR ∆1 ∆5 τ1 τ5 

1/N 8.178 19.070 0.062     

Static 8.586 2.680 0.592     

Volatility timing strategies 

EWMA 25.510 14.242 1.300 1595 1203 14 11 

GARCH-DCC 9.180 4.751 0.459 52 21 1 1 

LM-EWMA 11.597 5.841 0.787 288 234 8 7 

CGARCH-DCC 7.936 4.249 0.220 -70 -92 – – 

FIGARCH-DCC 9.940 7.657 0.384 105 -1 3 – 
 The table compares the out-of-sample performance of the optimal VN30 portfolio. The static portfolio is 

constructed using the constant mean and covariance matrix of the estimation period. For each dynamic 

strategy, the table reports the average annualised realised return (μ), the annualised realised volatility 

(σ), the Sharpe ratio (SR), the annualised performance fee (in basis points) ∆γ that an investor with a 

constant relative risk coefficient of γ is willing to pay to switch from the static portfolio to the dynamic 

portfolio, and the breakeven transaction cost τγ (in basis points) that he will be better off with the dynamic 

strategy. 
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The results in Table 2 suggests that volatility timing can generate economic value. However, the 

mean-variance portfolio optimisation requires the forecasts of both expected returns and 

covariance matrix. Expected returns here are assumed to the sample mean of the estimation 

period so that we can consider the benefits of conditional volatility estimators. However, 

portfolio performance is highly sensitive to the expected returns and considering only one set of 

expected returns may not appropriate. To assess whether the economic value of volatility timing 

strategies is realizable we need to incorporate the effects of estimation errors in expected returns. 

5.2 Controlling for Estimation Error in Expected Returns and Longer Horizon Forecasts 

To account for estimation error in expected returns, we follow Fleming et al.‟s (2001) 

recommendation to consider a range of expected returns that are generated via a bootstrap 

procedure. An artificial sample of 2,000 observations is created by randomly picking up blocks, 

with replacement, of 15 observations from the series of actual returns. We then estimate the 

unconditional mean and covariance matrix of this artificial return series. Dynamic portfolios are 

constructed using the constant unconditional expected returns from the bootstrap and forecasts of 

the conditional covariance matrix. To ensure the static and the dynamic portfolios are based on 

the same ex ante information, the static benchmark portfolio is formed using the bootstrap 

constant expected returns and covariance matrix. We repeat this procedure with 1000 trials, 

studying the economic gains of volatility timing across a wide range of plausible vectors of 

expected returns. We also study the benefits of the dynamic strategies with longer weekly and 

monthly investment horizons.  

Table 3 summarises the average results across the 1,000 bootstrap vectors of expected returns for 

the VN30 portfolio. Consistent with the literature ((see, for example, Fleming et al., 2001, 

Fleming et al., 2003, Han, 2006, Hyde et al., 2010), the dynamic strategies consistently 

outperform the static with all performance measures and rebalancing frequencies. The dynamic 

portfolios are generally riskier than the static portfolios, but they generate much higher returns, 

hence yielding high Sharpe ratios. The Sharpe ratios of the dynamics portfolios are around 2 

times as much as those of the static portfolios. The daily rebalanced LM-EWMA portfolio, for 

example, outperforms the static portfolio in terms of the Sharpe ratio in 97.5% of all bootstrap 

vectors of returns. The dynamic strategies also yield large performance fees due to their high 

realised returns. The investor is also better off by at least 205 bps and up to 2446 bps annually, 

on average, when switching to the dynamic portfolios. It is interesting to see that moving from 

daily to lower weekly and monthly rebalancing frequencies reduces the Sharpe ratio and the 

performance fees, suggesting the benefits of high frequency trading in Vietnam. Once we 
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consider transaction costs, however, however, the dynamic strategies are only attractive for 

lower rebalancing frequencies. For example, a daily trader with  is only better off with the 

LM-EWMA portfolio if his realised transaction cost is lower than 18 bps. With the average 

transaction costs of 20-30 bps currently in Vietnam, it may be infeasible to rebalance portfolios 

every day. The breakeven transaction costs of a weekly and monthly trader are much higher than 

those of a daily trader due to less frequent rebalancing. It is evident that the conditional volatility 

portfolios are more feasible in terms of transaction costs with low frequent trading.  

Among the conditional volatility models, the EWMA and LM-EWMA models outperform 

significantly. The LM-EWMA model tends to outperform the EWMA models in terms of the 

Sharpe ratio with longer forecast horizons, however, the EWMA model still dominate in terms of 

performance fee due to high realised returns. There is negligible difference between short 

memory and long memory volatility models. Though most of the volatility series exhibit long 

memory behaviour, the long memory volatility models fail to capture this feature and produce 

superior forecasts. It may be because the long memory models may be specified correctly, but 

their complex structure may hinder their performance. The high level of parameterization of the 

Component GARCH and FIGARCH models evidently generates large estimation errors that are 

detrimental to their performance. The long memory CGARCH-DCC and FIGARCH-DCC 

models in general cannot outperform the short memory EWMA, GARCH-DCC and the much 

simpler long memory LM-EWMA models. Parsimony may also explain the outperformance of 

the EWMA family models as compared to the GARCH family models. In particular, the 

simplicity in estimation of the two EWMA and LM-EWMA models is evidently beneficial in the 

high dimensional case. 

Table 3. Average Portfolio Performance of the VN30 Portfolio with Bootstrap Experiments 

 
 (%)   (%) SR p-value ∆1 ∆5 τ1 τ5 

Panel A. Daily rebalancing 

Static 9.976 4.604 0.668     

Volatility timing strategies 

EWMA 36.027 18.316 1.584 0.967 2446 1807 17 12 

GARCH-DCC 15.196 6.098 1.341 0.942 514 482 10 10 

LM-EWMA 18.522 7.774 1.479 0.975 835 756 18 16 

CGARCH-DCC 13.672 5.519 1.209 0.881 365 347 9 9 

FIGARCH-DCC 17.342 8.978 1.152 0.782 826 644 5 4 

Panel B. Weekly rebalancing 

Static 10.177 5.007 0.661      

Volatility timing strategies 

EWMA 19.083 8.333 1.452 0.955 869 779 40 36 

1 
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GARCH-DCC 13.942 5.144 1.348 0.948 376 375 31 31 

LM-EWMA 17.345 6.949 1.489 0.966 705 659 34 32 

CGARCH-DCC 14.123 5.083 1.399 0.959 395 394 38 38 

FIGARCH-DCC 18.864 9.658 1.233 0.893 834 695 19 16 

Panel C. Monthly rebalancing 

Static 9.896 6.614 0.458      

Volatility timing strategies 

EWMA 17.711 11.236 0.961 0.896 741 569 68 52 

GARCH-DCC 12.583 4.998 1.136 0.972 278 319 123 140 

LM-EWMA 15.317 7.587 1.101 0.960 536 509 85 81 

CGARCH-DCC 11.924 6.262 0.848 0.800 205 214 71 74 

FIGARCH-DCC 16.397 9.213 1.050 0.910 630 544 67 58 

The table reports the average out-of-sample performance of the VN30 portfolio across a wide range of 

bootstrap-generated expected returns. An artificial sample of 2,000 observations is generated by 

randomly picking up blocks, with replacement, of 15 observations from the series of actual returns. The 

procedure is repeated with 1,000 trials. Panels A, B and C report the results of the daily, weekly and 

monthly rebalanced portfolios, respectively. The static portfolios are constructed using the bootstrap 

expected returns and covariance matrices. For each dynamic strategy, the table reports the average 

annualised realised return (μ), the average annualised realised volatility (σ), the average Sharpe ratio 

(SR), the p-value (proportion) that the dynamic strategy outperforms the static alternative in terms of the 

Sharpe ratio, the average annualised performance fee (in basis points) ∆γ that an investor a constant 

relative risk coefficient of γ is willing to pay to switch from the static portfolio to the dynamic portfolio, 

and the average breakeven transaction cost τγ (in basis points) that he will be better off with the dynamic 

strategy. 

5.3 Sensitivity to Risk Aversion Coefficient 

In this section, we evaluate the performance of the dynamic strategies, controlling for different 

risk aversion coefficients  . So far all reported results are based on 1  . For each value of the 

risk aversion coefficients  , we again generate 1,000 bootstrap vectors of expected returns and 

use them, along with the conditional covariance matrix estimates, to construct the optimal 

portfolios. Table 4 evaluate the performance of the dynamic long memory and short memory 

volatility timing strategies against the static strategies. To save space, we only report the 

performance of the long memory LM-EWMA and the short memory EWMA models. These are 

the two best performing models in the previous experiments. 

Not surprisingly, when the investor is more risk averse, he will choose portfolios with lower risk, 

accepting lower expected returns, and paying lower performance fees. The Sharpe ratios are 

approximately the same for all risk aversion coefficients, with the slight difference due to the 

bootstrap procedure. Again, the dynamic strategies – both long memory and short memory- 

consistently dominate the static strategies in both datasets with all rebalancing frequencies and 
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risk aversion coefficients. The long memory volatility timing portfolios, for example, yield 

higher Sharpe ratios than the static portfolios in over 95% of total trials. With high breakeven 

transaction costs, the dynamic strategies are feasible in longer forecast horizons, where the LM-

EWMA portfolios generally yield higher Sharpe ratios than the short memory EWMA portfolios. 

However, the LM-EWMA model underperform their short memory counterparts in terms of 

performance fees due to lower realised returns. 
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Table 4. Comparison of the Static and the Dynamic Volatility Timing Strategies Using Different Risk Aversion Coefficients 

The table compares the average out-of-sample performance of the static and dynamic strategies using different risk aversion coefficients  . A bootstrap 

procedure is applied to control for estimation error in expected returns. The static portfolios are constructed using the bootstrap expected returns and covariance 

matrices. The short memory portfolios are constructed with the EWMA model, while the long memory portfolios are constructed with the LM-EWMA model. 

For each dynamic strategy, the table reports the average annualised realised return (μ), the annualised realised volatility (σ), the Sharpe ratio (SR), the p-value 

(proportion) that the dynamic strategy outperforms the static alternative in terms of the Sharpe ratio, the annualised performance fee (in basis points) ∆γ that an 

investor with a relative risk coefficient of γ is willing to pay to switch from the static portfolio to the dynamic portfolio, and the average breakeven transaction 

cost τγ (in basis points) that he will be better off with the dynamic strategy. 

 
Static Short memory  Short memory vs. Static Long memory Long memory vs. Static 

  μ (%) σ (%) SR μ (%) σ (%) SR p-value ∆1 τ1 μ (%) σ (%) SR p-value ∆1 τ1 

Panel A. Daily rebalancing 

1 9.976 4.604 0.668 36.027 18.316 1.584 0.967 2446 17 18.522 7.774 1.479 0.975 835 18 

2 8.488 2.302 0.668 21.514 9.158 1.584 0.967 1263 17 12.761 3.887 1.479 0.975 422 18 

3 8.018 1.516 0.696 16.877 6.103 1.616 0.967 868 18 10.969 2.592 1.528 0.981 293 19 

4 7.762 1.145 0.688 14.473 4.568 1.632 0.976 661 18 9.987 1.940 1.535 0.979 221 19 

5 7.613 0.927 0.683 13.015 3.670 1.636 0.974 534 18 9.399 1.559 1.537 0.976 178 19 

Panel B. Weekly rebalancing 

1 10.177 5.007 0.661 19.083 8.333 1.452 0.955 869 40 17.345 6.949 1.489 0.966 705 34 

2 8.586 2.563 0.643 12.934 4.169 1.426 0.943 429 39 12.116 3.483 1.470 0.963 350 34 

3 8.055 1.664 0.665 10.940 2.753 1.437 0.938 286 40 10.392 2.294 1.483 0.955 232 34 

4 7.788 1.254 0.658 9.978 2.096 1.426 0.995 218 40 9.553 1.744 1.467 0.963 176 34 

5 7.626 1.010 0.642 9.382 1.660 1.439 0.942 175 40 9.041 1.386 1.477 0.950 141 34 

Panel C. Monthly rebalancing 

1 9.896 6.614 0.458 17.711 11.236 0.961 0.896 741 68 15.317 7.587 1.101 0.960 536 85 

2 8.420 3.302 0.452 12.165 5.646 0.927 0.881 364 67 11.033 3.799 1.069 0.954 260 83 

3 7.956 2.182 0.462 10.483 3.758 0.938 0.889 248 69 9.720 2.534 1.078 0.951 176 84 

4 7.706 1.634 0.452 9.547 2.826 0.919 0.793 181 68 9.010 1.901 1.068 0.951 130 83 

5 7.568 1.317 0.456 9.089 2.259 0.938 0.886 150 70 8.627 1.518 1.079 0.957 106 85 
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5.4 Sensitivity to the Estimation Windows 

As the performance of conditional volatility models may be sensitive to the sample length used 

in their estimation, we investigate the performance of the strategies using a range of estimation 

windows. In particular, we consider estimation windows of 2, 3, 4 and 5 years of daily data. The 

analysis is again conducted with the bootstrap vectors of expected returns. We exclude the 

FIGARCH-DCC model as its estimation requires a prohibitively high upper cut-off point (the 

truncation lag for the FIGARCH model is normally set at 1000). To save space, Figure 1 only 

reports the average Sharpe ratios of the daily and weekly rebalanced dynamic portfolios using 

different estimation windows. As with the previous results, the dynamic strategies outperform 

the static strategy across different estimation windows. The Sharpe ratios of the dynamic 

strategies is around three times those of the static strategies. The dynamic strategies also yield 

large performance fees due to their high realised returns. Among the dynamic portfolios, the 

portfolios constructed from the more parsimonious EWMA and LMEWMA models, again, 

consistently dominate the more complex GARCH and CGARCH portfolios.  It is notable that the 

Sharpe ratios of the conditional volatility models tend to increase with the estimation window 

length, suggesting that the more observations in the estimation period, the less noisy the 

estimates and the more accurate the forecast of the conditional covariance matrix. 
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Figure 1. Sensitivity to Estimation Windows: Sharpe Ratios of the Dynamic Portfolios.  

The average Sharpe ratios of the optimal portfolios constructed from different volatility models 

are estimated with different estimation windows. Bootstrapped expected returns are employed to 

account for estimation error. The estimation windows correspond to 2, 3, 4 and 5 years of daily 

data. 

6 Conclusion 

The paper examines the economic value of allowing for conditional volatility in forecasting the 

conditional covariance matrix for dynamic asset allocation. Consistent with the literature, the 

results clearly demonstrate that investors are willing to pay to switch from the static 

unconditional strategy to the dynamic volatility timing alternatives. However, the findings show 

little difference among the forecast performance between short and memory volatility models. 

Among the conditional volatility models, the more parsimonious EWMA and LM-EWMA 

models nevertheless dominate. They consistently produce portfolios that have more economic 

value than those produced by more complex GARCH-type with all performance measures and 

across all investment horizons. The high degree of parameterisation and computational burden 

may generate such high estimation error that it is detrimental to the performance of the GARCH 

models. When transaction costs are considered, however, the dynamic volatility timing strategies 

are only attractive at lower rebalancing frequencies. The results are robust to estimation error in 

expected returns, the choice of risk aversion coefficient and estimation windows. 

The analysis of the economic value of multivariate conditional volatility models can also be 

extended in several ways. First, we assume constant expected returns. Time-varying volatility 

affects returns and it is hard to justify the separation of the dynamics of expected returns from 

those of volatility and correlation. It would thus be of interest to extend the study in the context 

of time-varying expected returns. Second, it may be useful to study the economic benefits of 

dynamic strategies in an intertemporal asset allocation framework, since dynamic strategies may 

behave differently in the presence of hedging demands. Third, the study is restricted to 

examining the economic value of forecasting the conditional covariance matrix from an 

investment perspective. One may want to examine the implications for the conditional 

covariance matrix in other situations encountered in practice, such as risk management. 
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